
Elastic Search
&
In-App Messaging

HT TP://BAYESANALTYIC.COM

JOE ELLSWORTH CTO, ALGORITHMS SCIENTIST & CONSULTANT

JOEE@BAYESANALTYIC.COM 206-601-2985

http://bayesanaltyic.com/
mailto:joee@bayesanaltyic.com

Bayes Analytic LLC
High performance distributed architecture.

◦ Greater than 300 queries per second

High availability Web

Complex Search

Geo-Location Search & Matching

Data Discovery

Predictive Engines for Search & Offers

Products
◦ Internal product – Stock and Forex Price prediction
◦ Open Source high performance Node libraries
◦ Open source Metadata server in pure Node
◦ Open source CNC Scripting
◦ Open source F# based Messaging – optimized form multi-reader very high performance and low latency.

Clients: Mostly medium sized companies with over 300M in revenue who are having performance, reliability or
development velocity issues. A small number of startups like Peerspace.

206-601-2985

Basic Architecture

Ngix +
Proxy

SVC Inventory

SVC Sales & Booking

Svc Messaging

Javascript
HTML other
static assets

MongoSVC SSO/User/Session

RIA HTML
App Ajax Data

Calls

Elastic
Virtual
Load

Balancer

Elastic
Search

Node
HTTP

Server /
Custom

App server
dispatch

Handler Get Message Thread

Handler Update Message

Handler Send Message

Handler Find Message

Su
p

p
o

rt Lib
raries

Ascii
Journaling

Que

Outbound
Push SVC

Email / Device
/ SMS

More Typical Architecture

Master data source

Extractor / Event Bus

Delivery Queue

Multiple Fully Isolated Elastic search clusters

Elastic search is considered read only for the web app.

Normally has ASP tier -> Search Service -> Elastic Search

Sample Message Screen

Make Under utilized spaces available for
other users

PeerSpace believes that changing your work surroundings
via short-term use of inspiring spaces regularly boosts
innovation for all types of professionals. To build a thriving
marketplace, PeerSpace has partnered with businesses and
other space owners to help them make more efficient use
of their space, allowing them to safely and easily share it
with other professionals online.

Sample Conversation Thread

Why Middle service
Application specific simplified queries.

Application specific responses

Isolate complexity especially when single
query requires multiple chained searches.

Limit connection demands against elastic
search.

Keep most of the API technology Agnostic so
we can swap engines.

Maintain flexibility to allow manual shading to
spread load across Elastic Search.

Simple Thread Query
http://127.0.0.1:9602/api/messages/threadtofrom?to=64b69968c69e63060063b664&from=hel
p&v=elast_query,count

What it looks like as Elastic Search Query
POST: http://127.0.0.1:9599/_search

{"size":999,
"sort":[{"created":{"order":"desc"}},
{"from.ssoid":{"order":"desc"}},
{"space.id":{"order":"desc"}},
{"listing_id":{"order":"desc"}},
{"booking_id":{"order":"desc"}},
{"created":{"order":"desc"}}],
"query":{"filtered":{"filter":{"bool":{"should":[{"bool":{"must":[{"term":{"from.ssoid":"help"}},{"t
erm":{"to.ssoid":"63b68068c69e560860a6b664"}}]}},{"bool":{"must":[{"term":{"from.ssoid":“64
b69067a69e620601a6b664"}},{"term":{"to.ssoid":"help"}}]}}]}}}}}

Elastic Search Queries in Node.js

var aggs = {
"from": {
"terms": {

"field": "from.ssoid"
}

},
"to": {
"terms": { "field": "to.ssoid" }

},
"is_read" : {
"terms" : { "field" : "is_read" },
"aggs" : { "mtype" : { "terms" : { "field" : "mtype"}

},
"prefs" : { "terms" : { "field" : "prefs"} }

}
}

}

var tquery = {
"size": tin.size,
"sort": [

{ "created": { "order": "desc" } },
{ "from.ssoid": { "order": "desc" } },
{ "space.id": { "order": "desc" } },
{ "listing_id": { "order": "desc" } },
{ "booking_id": { "order": "desc" } },
{ "created": { "order": "desc" } },
//{ "created": { "order": "desc" } }

],
"query": {

"filtered": {
"filter": {

"bool": {
// value of filter added below

} } } } }

Supporting Views
http://127.0.0.1:9602/api/messages/threadtofrom?to=542e92d7259e24025027&from=help

http://127.0.0.1:9602/api/messages/threadtofrom?to=542e92d7259e24025027&from=help&v=
elast_query

http://127.0.0.1:9602/api/messages/threadtofrom?to=542e92d7259e24025027&from=help&v=
count

http://127.0.0.1:9602/api/messages/threadtofrom?to=542e92d7259e24025027&from=help&v=
count,elast_query,msg_detail

http://127.0.0.1:9602/api/messages/threadtofrom?to=545e95d7c59e540850a357&from=help
http://127.0.0.1:9602/api/messages/threadtofrom?to=545e95d7c59e540850a357&from=help
http://127.0.0.1:9602/api/messages/threadtofrom?to=54be90d7cf9e540800a3b764&from=help&v=elast_query
http://127.0.0.1:9602/api/messages/threadtofrom?to=54be90d7cf9e540800a3b764&from=help&v=count
http://127.0.0.1:9602/api/messages/threadtofrom?to=54be90d7cf9e540800a3b764&from=help&v=count,elast_query,msg_detail

Elastic Search Good Bad Ugly

Good:

Rapid development

Extremely flexible with emerging requirements
to add fields.

Nearly transparent syntax between Node and
Elalstic

Aggs module is extremely helpful

Search functionality supported esoteric
requirements more expensive to support in
traditional DB.

Ugly:

Simple architecture may have write scaling
issues.

Query after write on refresh forces cache
invalidation that could reduce max TPS.

Lack ofAlter table requires dump, transform,
reload script when it occurs but luckily seldom
encountered.

Under heavy load Elastic search will panic with
horrible 7,000ms or worse search responses.

Query language is simply more cumbersome and
way more verbose than equivalent Lucene / Solr
Syntax.

Recovery Journaling
Never, Ever trust any binary Storage system. Must have ASCII Based human readable journal to rebuild.

◦ Over the last 20 years I have billed over ½ million $ for emergency recovery of supposedly high stability systems such as Oracle,
Progress, MS SQL, Berkley, Lucene. When they fail it is often with silent creeping corruption that quite often crosses many
backups.

◦ ASCII journals have saved me more than once when forced to abandon a promising product that wasn’t quite ready for
primetime. And would have saved my clients. Due to the fact that we have the ASCII journal a elastic search corruption event
is not a huge risk. They are cheap and massively scalable.

Saves every record JSON source saved in elastic search.

Must be technology agnostic

Simple JSON files limited to about 10 Meg per file.

Auto join smaller files to 2 Gig limit for backup

Hook to auto replication system for off box replication. Can also use queue like Kafka.

Can index filename and starting offset to easily retrieve any version of any object by ID

Periodic de-dupe can be used to reduce space if versioning is not needed.

Just used this to reload an elastic search instance when needed to change underlying object type.

Example Curl Svc Calls – essential docs

curl -X GET
"http://127.0.0.1:9602/api/messages/threadtofro
m?to=2363163d26f83633a63f637&from=f8b2962
0026c21e62e1e664a672&v=elast_query"

Running many stand along elastic search
instances.
..\..\elasticsearch\bin\elasticsearch.bat -DES_HEAP_SIZE=1G -
Des.path.data=../../elastic9599/data -Des.path.logs=../../elastic9599/logs -
Djava.io.tmpdir=../../elastic9599/tmp -Des.path.cluster=a9599 -
Des.mlockall=true -Des.vm.swappiness=1 -Des.http.port=9599 -
Des.transport.tcp.port=9598 –Des.cluster.name=elastic9599

Allows many different elastic search instances that are all
completely isolated for different clients on the save server.

Caution: Keep your Data and log directories as virtual mounts for the Docker image
or it will cause no end grief.

Also used to Bypass JVM GC issues on Big Boxes – Has allowed more than Double Net TPS with multiple search listeners

Minimal Mapping Strategy

Core Principal: Allow new Fields to be added by client without changing our Service

Our Core Libraries (MIT Open Source)
Robust HTTP to Elastic Search.

Connection limit management

Automatic basic parsing for Rest/JSON services

Advanced control of handlers

MDS – Metadata Service All Native Node
Designed to support high speed metadata fragments not returned by the Search engine.

Forward Cached repository nearly as fast as Memcache but massively scalable to many T.

Out performs any other Metadata server we have tested.
◦ At about 30K requests per second with average doc size of 8K and 90 million docs.

◦ On AWS instance with 8 cores and 128GB of RAM.

Runs up to saturation on a 1 Gig network when used with 8 Cores.

Maximal leverage of Linux file system cache.

